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An all valence electron theory, based on SCF perturbation theory, for the excited state energies 
of crystals with energy bands of low to intermediate dispersion is presented. It is shown that molec- 
ular theory leads to results equivalent to those of the valence bond treatments of Davydov and Choi, 
Silbey, Jortner, and Rice. The advantages of the proposed MO approach are twofold. First, the 
explicit inclusion of all valence electrons permits an unambiguous calculation of any structural 
changes that may accompany electronic excitation. Second, and more important, it provides a con- 
venient method for calculating the excited states of crystals composed of relatively strongly interacting 
molecules, such as those within lattices of hydrogen bonded or charge transfer crystals. 
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Introduction 

An SCFMO (self consistent field molecular orbital) theory for molecular 
crystals has recently been reported [1-7]. So far, the theory has been largely 
applied to the theoretical investigation of hydrogen bonding within crystal 
lattices. It is based on conventional single determinant molecular orbital theory, 
but differs from the usual approach [-9, 10] to solid state theory in that it is inde- 
pendent of the wave-vector concept. The introduction of wave-vectors is avoided 
by solving the SCF matrix equation for the crystal by means of high order SCF 
perturbation theory [11], using the orbitals of hypothetically non-interacting 
lattice molecules as the zero order solutions. In other words, the method starts 
with an oriented gas and then allows for intermolecular electron delocalization 
by means of SCF perturbation theory. The result is a method for calculating 
the crystal density matrix and energy per unit cell, and all quantities calculable 
therefrom. The crystal orbitals and band structure are not calculated directly 
because of the way the theory circumvents the introduction of wave-vectors. 
However, these quantities may be calculated [-4] on completion of the main 
calculation by a suitable unitary transformation of the perturbation series for 
the Fock and orbital matrices. This transformation serves to introduce wave- 
vectors into the theory [4]. 

Although the above approach is not based on the use of Bloch symmetrized 
crystal orbitals, the space group symmetry nonetheless plays an important role 
in the theory. It is introduced in a particularly simple and direct manner to 
decouple various perturbation sub matrix equations which occur, thereby ap- 
preciably reducing the computational effort required. 
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The above single determinant theory can be confidently applied to the study 
of those molecular crystals where the lattices are bound by predominantly hy- 
drogen bonded or charge transfer interactions. However, many crystals are thought 
to be bound by predominantly dispersive forces [ 12, 13]. As these result from the 
Coulombic correlation of electron motion [14], they are not included in any 
single determinant treatment of intermolecular forces. This dispersive component 
of the binding energy can be included in the molecular orbital treatment through 
the introduction of the interaction between the crystal ground and excited state 
electron configurations. Since the crystal orbitals discussed here are solutions, 
albeit approximate, to the crystal Hartree-Fock equations, only double electron 
excitations will contribute to the ground state energy [15]. 

The overall objective of the present investigation is to extend the above theory 
of crystals by the inclusion of the dispersive contribution to the lattice binding 
energy. As with the original non-dispersive theory, the aim is to do this inde- 
pendently of any assumptions concerning the pairwise additivity of intermolec- 
ular forces. This can be achieved by considering the configurational interaction 
problem for the crystal as a whole. The theory presented here is for single electron 
excitations only, and represents the first step towards the dispersive theory. 
Although incomplete from the point of view of the above objective, the theory 
may nonetheless be of interest to theorists working on crystal spectra, especially 
of charge transfer systems. 

Both the theoretical and experimental aspects of the spectra of dispersive 
crystals have extensive literatures that have been reviewed in several books [16]. 
Of the two basic theoretical approaches, the present most closely resembles that 
of Choi, Silbey, Jortner and Rice [17]. It does, however, differ in two important 
respects. First, and most fundamental, the present approach starts with de- 
localized crystal orbitals that are solutions to the crystal SCF equations. Thus, 
many of the interactions that lead to the creation of charge transfer as opposed 
to Frenkel excitons are included at an early stage of the theory. This should prove 
advantageous when the theory is applied to crystals composed of relatively 
strongly interacting molecules. Second, the present treatment makes no distinc- 
tion between a and r~ electrons; both are included equivalently. This permits an 
unambiguous calculation of possible structural changes, both crystal and molec- 
ular, that may accompany electronic excitation. 

The content of the present paper is entirely theoretical. The resultant theory 
has been used to calculate the excited state properties of two rather different 
types of crystals, naphthalene and formamide. The results from these calculations 
will be reported in a subsequent paper. 

Theoretical Section 

We discuss here the relationship between the band structure and the electronic 
excited states of a molecular crystal. A convenient starting point for this is the 
virtual orbital approximation to excited states. That is, it will be assumed that 
crystal excited states can be represented by the excitation of an electron from 
a level in the filled band to one in a vacant band. As the discussion progresses, 
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we shall find that this simple approach has to be modified in order to achieve 
a realistic representation of the electronic excited states of molecular crystals. 

The crystal orbitals, Oi(k, 2), are characterized by three indices, i, k, and L 
The first index, i, identifies the free molecule molecular orbital from which the 
crystal orbital is derived. Such an identification is possible only for crystals com- 
posed of relatively weakly interacting lattice molecules. The second index, the 
wave-vector k, labels the irreducible representations of the crystal's translational 
subgroup under which the orbital is classified. Finally, the third index, 2, may 
be taken as the corresponding label for the unit cell group. 

The zero order crystal orbital is given by [41 

O}~ 2 ) = Z - ~ N - - ~ o ; . , , ~ e x p [ 2 r c i k . ( T + u ) ]  C}~ (1) 
u T 

where N and Z are, respectively, the number of unit cells in the Born von Karman 
repeat unit and the number of molecules in the unit cell. T and u, which are both 
vectors, serve to label molecules by pointing to the unit cells and the sites within 
these cells, they occupy. In the summations, u goes from 1 to Z and T from I 
to N. ~o~, is the orbital coefficient for the u th single site function [4] in the 2 th 
crystal orbital. If the discussion is limited to those crystals where the unit cell 
group has no degenerate irreducible representations and all the unit cell mole- 
cules are symmetry related, the o 's  may be taken as the characters for the )th 
representation of this group. This is an approximation if the wave-vector as- 
sociated with the single site functions is a member of a star of wave-vectors [18]. 
In this case, the ~o's are strictly k dependent and cannot be determined by sym- 
metry arguments alone. The neglect of this dependence is a common approxima- 
tion often referred to as the restricted Frenkel limit [19]. There is some reason 
to believe that for the present application this approximation is unimportant [4]. 
C~ ~ (T, u) is the ith molecular orbital localized on the T, gth molecule to the zeroth 
order. It is an infinite column vector with zeros everywhere except for the posi- 
tions allocated to the atomic orbitals of the Tu th molecule in the crystal basis set. 
It will be assumed that this basis set is ordered so all atomic orbitals associated 
with a given molecule are collected together as a group. With this arrangement, 
CI ~ (T, u) will be zero everywhere except the Tu th block which will house the 
atomic orbital coefficients for the i th molecular from the hypothetically isolated 
Tu th lattice molecule. 

The notation for the crystal orbitals has been slightly modified from the 
previous paper [4] to emphasize the relationship between T and k and u and 2. 
This reciprocity carries over to the orbital label i, in the sense that it labels two 
sets of orbitals which, to the zeroth order, are related as the three dimensional 
Fourier transforms of one another. This duality plays an important role in the 
theory and, consequently, a considerable clarification of the forthcoming equa- 
tions can be achieved by adapting the orbital notation to reflect it. As a first 
step, points in real and reciprocal space are labelled by ~ and t/, respectively. 
The crystal orbital, Eq. (1), is thus given by 

O}~ 2,) = Z - ~ N  -~ ~, coz, u: ~ exp(2nik,. Re) CI ~ (Tr ur (2) 
u~ r~ 
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where, for convenience the u has been combined with T to give R. R may be used 
interchangably with T, u to label a molecule when we are not concerned with the 
structure of the unit cell. We may now introduce the following convention 

i" = 0i(k~, 2~),  (3) 

i~ = Ci( T;, u~) . (4) 

The approximate ground state electronic wave function for the crystal is given 
by the usual antisymmetrized product. This can be conveniently written by 
making use of the above convention, Eq. (5). 

% = ~ { . . .  i"~. . .}  (5) 

where d is the antisymmetrization operator and a bar indicates orbital occupa- 
tion by an electron of fl spin. Similarly, crystal singlet and triplet wave functions, 
corresponding to the excitation of an electron from the Cth level in the filled band 
to the 12'h level in the vacant, are given by 

3 ' 1 ~ i l / 2  = 2-+(d{ . . .  i tS . . .}  _+ d { . . .  ~l=.. .}).  (6) 

The excitation energies are given directly by the well known expression derived 
by Roothaan [8] for the corresponding molecular process. 

t ,3Eil ,12 = g(i2) _ e(i t) _ j ( i  t ' 12) -b 2 z K ( i  t , /2)  (7) 

where e(l 2) is the level from the energy band associated with the crystal orbital l 2. 
In the notation of the previous paper, 

~(t 2) - ~,,~2(k2). (8) 

J and K are Coulomb and exchange integrals, respectively. 

1 
j ( i  t , /2)  = ( i  t 12[i ~ l 2)  = ~ .f i t (1)*/2(2)* i I (1)/2(2) dz~ dz 2 (9) 

and rt 2 
K ( i  1, lZ) = (i  t 12[12 i t ) .  (10) 

The z in Eq. (7) equals zero for a triplet state and one for a singlet. 
Equation (7) is the crystal analogue of the virtual orbital expression for the 

excitation energy of a finite molecule. In contrast to the molecular case [20], 
the virtual orbital approximation is fundamentally in error for molecular crystals 
and does not even provide an acceptable first approximation. From the physical 
point of view, the problem with the virtual orbital approximation is that it 
describes crystal excited states in terms of an independently delocalized electron 
and hole, whereas there is strong experimental evidence which suggests that, for 
the lower re-states of aromatic molecules at least, the electron and hole are tightly 
bound and delocalize together as a Frenkel exciton. 

From the point of view of molecular orbital theory, the adoption of Eq. (7) 
would lead to two serious problems. First, it has the incorrect limiting behaviour 
as the intermolecular potential tends to zero [4]. At this limit, the oriented gas, 
the excitation energies should be infinitely degenerate and all correspond to that 
for an isolated molecule. It can easily be shown, using the important result of 
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Ladik et al. [21], that Eq. (7) does not possess this essential property. Second, 
under the A k = 0 selection rule, Eq. (7) yields an infinity of almost degenerate 
states for a crystal with low dispersion bands. Under these circumstances an 
appreciable level of configurational mixing would have to be included in order 
to achieve realistic results. 

The above discussion leads to the conclusion that single configurational 
representations of crystal excited states are unacceptable. Moreover, the theo- 
retical investigation of these states would require the resolution of a configura- 
tion interaction problem over an infinite basis of almost degenerate virtual 
orbital states. The solution of this problem is not as difficult as it would appear 
at first sight, since the lower states are known to closely correspond to a bound 
electron and hole travelling through the crystal as a Frenkel exciton. This sug- 
gests that the configuration interaction problem could be appreciably simplified 
by transforming the delocalized electron-hole basis functions into a localized 
representation. 

We now consider the organization of such a localized state basis set for the 
crystal infinite configurational interaction problem. These functions can be 
generated, following Slater and Shockley [22], by a double Fourier transforma- 
tion of the excited state functions given in Eq. (6). Thus, if l'3Lu(1 ; 2) is a function 
in which the hole is localized on the Tlux th molecule and the excited electron on 
the Tzu2 th then 

I'aL~(R1, R2) 
(11) 

= N -~Z- '  Z Z ~176176 Z Z exp [27ri(k 1 - R 1 - k 2 �9 R2) x 1'37~ilz2 
21 22 kl k2 

where R t labels molecule (T1, Ul). 
These functions are the new basis functions for the proposed configuration 

interaction calculation and replace the l'a~i~l: set. The number of functions in 
these two sets are equal, as may be seen as follows. For a given i and l, there are 
(N x Z) 2 different 1'3~i~12 functions, where Z is the number of molecules in the 
unit cell. Noting that l'3Lu(1 , 2) :~ ~'aLu(2, 1), it can be seen that this is just the 
number of distinct L functions. Thus, nothing has been omitted by this change 
in basis set. 

The L-type basis functions, being localized, transform reducibly under the 
crystal space group. The next step is, therefore, to simplify the eventual con- 
figuration interaction secular equation by taking linear combinations of these 
functions to generate new functions, M, that transform irreducibly under the 
space group. Of all the different possible symmetries, only the k = 0 representa- 
tions are of interest. This is because the selection rule for electronic transitions 
is d k-~ 0 and the crystal ground state wave functions transforms as the k = 0 
representation. The k = 0 M functions are given by 

I'3M~([3,0)=Z--~N-} ~oo~,~ l"3Lil(T,u; T+[3, u+o). 02) 
u T 

The lattice vectors fl and 0 give the separation between the molecule on which 
the hole is centered and that on which the excited electron is centered. There is 
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a set of M functions, corresponding to all of the unit cell representations, for each 
value of fl and0;  that is for every conceivable electron hole separation. 

The M functions describe the crystal excited states in terms of a generalized 
exciton for which, although they are bound together, the electron and hole are 
on different molecules separated by fl unit cells and Q sites�9 The Frenkel exciton 
corresponds to the special case where both fl and 0 are zero. 

Symmetrization of the localized L functions by means of the space group 
symmetry confers delocalized character on the final M basis functions. It would 
appear, therefore, that the basis function transformations have gone full circle. 
The original state functions, l'3~gilt2 , which represent highly delocalized excita- 
tions, were transformed to localized L functions which in turn were transformed 
into the M functions, which also represent delocalized excitations�9 There is, 
however, an important difference in the character of the delocalizations repre- 
sented by the ~g and M functions. In the former case, the excited electron and hole 
are represented as being in independent motion in the crystal lattice; that is, their 
motion is uncorrelated. In the case of the M functions, the electron and hole, 
even though they may be on different molecules, travel through the crystal 
together as a single entity; their motions are completely correlated. The ~v and M 
basis functions represent the two extremes in crystal and excited state properties. 

The M state basis functions of a given symmetry, 2, form the chosen basis set 
for the configuration interaction calculation; the final crystal excited state wave 
function will have contributions from all M's of a given symmetry and multiplicity�9 
The corresponding secular equation will therefore be of infinite dimension. 
Hopefully, because of the choice of basis set, nearly all off diagonal matrix 
elements will be negligible in comparison with the diagonal elements�9 In any 
event, as a first approximation, the crystal excited state energies will be approxi- 
mated by the appropriate diagonal elements of the configuration interaction 
matrix. 

It may appear that the above approach neglects any possible admixture of, 
for example, charge transfer character into states that are largely Frenkel exciton 
in character�9 This is not the case�9 The crystal orbitals, O, used to construct the 
L functions are solutions to the Crystal SCF equation and are thus not perfectly 
localizable. As a result, the L functions are only perfectly localized to the zeroth 
order and in general have a more or less delocalized component�9 This confers 
some charge transfer character even on the Frenkel-type M functions�9 

Implementation of the configuration interaction procedure requires the 
evaluation of the following type of matrix element: 

l'3Hil,mn(1 , 2 ;  3, 4) = (1 ,3Lu(R  1 ; Rz) IH - Eg . . . .  d [ l"3Zmn(R3 ; R4)) (13) 

where H is the crystal electronic Hamiltonian and Eg .. . .  d the crystal ground 
state energy�9 Expanding the localized, L, functions using Eq. (11), we find this 
element equals 

2`1 2.2 2`3 )-a 

�9 E E E E exp[-2ni(kl .RI--k2.R2-k3.R3+k4.R,O] (14) 
kl k2 k3 k4 

�9 (l"3~mzlH -Eg  . . . .  d[ l"3em3n4)" 
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The integral can readily be evaluated using the standard formulae of configura- 
tion interaction theory, such as those for example given in Ref. [ 15]. Remembering 
that the crystal orbitals are eigenfunctions of the Fock matrix for the crystal, 
we find Eq. (14) equals 

Z - 2 N -  2 2(4)  .~.ls 4 

�9 2 (4) exp [ -  2Tci(kl �9 R1 - k2" R2 - k3- R3 + k4- R4) (15) 
k 

{fi~,e(/2) - (~ims(il ) } 51,352,4 ..~ { 2z ( m 3121n4i x ) -- (m  3121iln4)} 

where 61'3 = 1 if kl = k3 and 21 = 23 and is zero otherwise. The superscript con- 
vention has been introduced for the Kronecker delta to make it consistent with 
later usage. E(~ 4) represents the fourfold summation of 2's explicitely written 
out in Eq. (14). 

The next step is to expand Eq. (15) using the special properties of the crystal 
perturbation algebra introduced in previous papers [-2, 4, 5, 8]. We start with the 
orbital energy terms: 

Z - 2 N  -2 ~ ~ c ~ 1 7 6  

al 22 (16) 
�9 Z Z exp [- - 27r i (k  a . (R  a - R3)  - k z �9 (R  2 - R4))] (,5,,e(l 2) - ~Si,,,e(i 1)). 

kl k2 

To the zero order, ~(l 2) is independent [-4] of k2 and 2 2 and equals e (~ (12), the 
/th orbital energy of an arbitrary lattice molecule (here set to T2u2). Thus, to this 
order the orbital energies may be taken outside of the summations, and the 
summations over k and 2 completed. The final zero order result is 

{fit. e(~ (12) -- b/m e(~ (il)} 6i,3c~2,4 (17) 

where 6~,3 = 1 if R1 = Ra, that is Ta = T 2 and ua = u3, and is zero otherwise. 
In the notation of the previous paper 

e ~~ (12) - ~I ~ 

The first order orbital energy e (~) (/2) depends ]-4] on both 22 and kz .  The expres- 
sion [4] for e (~) is given in Eq. (18) 

e(~) (I 2) = ( N Z )  -~ ~ Z O))l.2us('O-'~2u6 2 2 exp [2zcik 2 �9 (R 6 - -  Rs) ] 5'6F(t,~) (18) 
U5 u6 7"5 T6 

where once more the notation of the previous paper has been condensed 

5'6F(/1) = Tsus"T6U6Vl(1). (19) 

S'6F(ll is the submatrix from the full crystal first-order Fock matrix which has 
elements between all atomic orbitals on molecule T s u s  and all atomic orbitals 
on molecule T6u 6. 

5'6/?(/1) = 15 5 '6F(1)16.  (20) 

Substitution of Eq. (18) for the appropriate orbital energy in Eq. (16) yields, on 
completing the summation over 2's and k's: 

2'4F(/1) ~1.3 -- 1'3F(i 1) c]2.4 �9 (21) 
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Thus, to the first-order, the orbital energy difference is given by 

(6z, ~(~ (12) - 6,,i e(~ (il)) (~1,3(~2,4 "~ 2'4F}/1) 61,3 - -  1'3F}il) 62,4. (22) 

We now proceed to expand the electron repulsion integrals. The contribution 
from the zero order crystal orbitals is derived as follows�9 First, we expand the 
(m31Z] n'*i 2)  integral in terms of zero order molecular orbitals: 

( m  3/2 In4it ) ---- N -  2 Z -  2 2(4-) (DZaus(Dj.2uaO)~4u7(D~lu 8 
u 

�9 27 (4) exp [-2~i( - k 3 - R 5 - k 2 �9 R 6 + k4" R7 + kl �9 Rs) (23) 
T 

�9 ( m s 1 6 [ n 7 i s ) .  

Next, this is substituted into the appropriate position in Eq. (15), and the sum- 
mations over 2 and k completed. The final result is 

( m  312]n4i l ) .  (24) 

The effect of the multiple summation is simply to convert the superscripts on the 
crystal orbitals to subscripts on molecular orbitals. Thus, the total zero order 
electron repulsion term is 

2-c(m 312ln4i 1) - (m312[i  1 n4)  . (25) 

The procedure for the evaluation of the first, and higher, order contributions 
to the electron repulsion is very similar. The integral (mal21n4i~) ,  for example, 
is expanded to the first order as 

(m 3/21n4 (9/(1) (k 1 )~t)) + ( m31210(, 1) (k4, 24) is) + ( ma 0} 1) (k2 22) 1 n4il ) 
(26) 

-t- ( 0  (1) (k 3, 23) 12[n4iX). 

As in conventional perturbation theory, the first order change in the crystal 
orbitals, 0 (*), is expanded in terms of the zero order orbitals, 0 (~ 

0 (2) (k, 2) = O (~ (k, 2) ~4(k, 2) (27) 

where d is the matrix of mixing coefficients. The intermolecular potential within 
the crystal, which provides the perturbation, can only mix zero order crystal 
orbitals of the same symmetry, that is the same k and 2. This result is self-evident 
for wave vectors that are invariant with respect to unit cell group operators. 
In the case of a more general k belonging to a star, mixing between orbitals 
associated with the star is presumably allowed. However, as this mixing will be 
of a unitary nature and corresponds to a rotation of a degenerate basis, it will 
be neglected. 

The matrix elements of d are given by 

WJpi : 0(0)(kl, ~'1) NO) {9/(~ (kt)l-1)/(el ~  e(~ (28) 

d u = 0 (29) 

where F (~) is the first-order change in the crystal Fock matrix. Both F (~) and d 
are of infinite dimension but may be partitioned into finite dimensioned sub- 
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matrices by making use of the special ordering of the basis set [5]. On expanding 
F (a) into submatrices we find 

~pi( [s )~) = ( / g )  - 1  Z Z ~176 Z Z e x p [ 2 7 z i k .  ( e  6 - Rs)-I 5'6d v, (30) 
U5 U6 R5 R6 

where, in the notation introduced in Eq. (19) 

5,6S~pi = 5,6 (1) (0) F~,i /(ei - e(p~ , p ~ i . (3~) 

On substituting for O11) (k1•1) in (m313lnr ) using Eqs. (27) and (31), 
then substituting into Eq. (15) and completing the fourfold summations over the 
2's and k's we find the contribution to be 

Z Z Z' 5'l~pi(m312[n4P5). (32) 
u5 7"5 p 

The prime on the summation over all of the orbitals of molecule five excludes 
the case p = i. Equation (32) represents the first order change in the electron 
repulsion integral under discussion as a lattice sum, over Rs, with molecule 1 
as the origin. 

Thus, the total first order contribution from 2"c (m 312[n4 i 1) - (m 3121i 1 n 4) is 

~ ~ '  [5 ' l~p i {2z (m312[n4ps ) - (ms l z lpsn4)}  
u5 7"5 p 

-t- 5"4dp,{2z (m312[peil ) - (ma/2 [ iaps) } 
(33) 

+ s'2~Cpi{2z(m3psln,,il) - (maps liln4) } 

+ 5,3alp m {2z @5121 n4il) - @512 [ il n4) }]. 

It is our intention to work with the theory in a simplified form based on a 
neglect of differential overlap approximation. The systematic integral approxima- 
tion of this method leads to an appreciable simplification of the theory without 
loss of the essential SCF features of inter electron repulsion; the simplified equa- 
tions still reflect the underlying structure of the more detailed theory. Recent 
work [23, 24] strongly suggests this step to be unwarranted in the case of calcu- 
lations on triplet excitons. The same may also be true for singlet excitons from 
states with very small Davydov splittings. However, for the singlet states of 
strongly interacting molecules, such as charge transfer and hydrogen bonded 
crystals, the neglect of these integrals should be relatively unimportant. 

Under the intended approximation all charge distributions involving two 
molecules are neglected. Thus, applying the approximation to Eq. (32) we find 
that the only term from the summation over the lattice to survive is that for which 
R 5 = R  2. Furthermore, e 3 must equal R 4. Thus, the only terms from (32) 
remaining are 

~ '  2' ldpi(mal2ln3p2) 63, 4 . (34) 
P 
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The final approximate expression, to the first-order, is given by 

Hu,,,.(1,2; 3,4) = (6ln e(~ (12) -- C~img(il)) 01,3~2,4 "~- 61,n~1,3 2'4/7/(/1) - -  6irate2,4 1'3/7/(/1) 

+ {2z (m 3111/43 il ) ~ 3,4~1,2 - -  (m1121 il//2) 61,362,4} 

+ Z '  2~{2'1d.,(m312 I//3p2) 63,4 + 3'4~r 61,2 
P 

+ t '2dpi(m3plln3 il)  63,4 "r 4'3"-~pm(p412[r14i2) 61,2} 

- -  {2'4~r fil,3 + 3@r 62,,* 

+'*'2~r l i3n4) 61,3 + l'3~r 1 I2 l iln2) 62,a} �9 

(35) 

Frenkel Excitons: The Davydov Splitting 

The Frenkel exciton corresponds to the situation where the electron and hole 
are strongly bound together on the same molecule. In the present treatment the 
wave functions which most closely correspond to this type of state are the M(0, 0) 
functions; it will be remembered that these functions have some charge transfer 
character as a result of their construction from crystal orbitals that are eigen- 
functions of the crystal Hartree-Fock equation. 

The diagonal element of the configuration interaction matrix and the first 
approximation to the crystal excited state energy, Al'3EZtOut, 0) corresponding to 
M~(0, 0) is given by 

1 
AI'3E~/(0' 0)-- N Z  Z Z e)x, lc~ ~ Z l'3Hu,mtl, 1"2,2), . (36) 

ul u2 7"1 7"2 

Substituting for 1,3 H we find to the zeroth order 

= e(o) (lx) - e(o) (i 0 + {2.c (il 11111 il ) _ ( i  1 llli 1 ll)} 

2z ~ ,  (i112[lli2) 
ul 112 T2 

(37) 

where the prime over the lattice sum is to omit the origin cell when u 1 = u z. 
It is appropriate to point out here that the d~ are the free molecule orbital 
energies and the first two electron repulsion integrals are the molecular Kit 
and Ju, respectively. 

Now, the first four terms when taken together give the excitation energy, 
singlet and triplet, for an isolated molecule under the virtual orbital approxima- 
tion [8]. Thus, Eq. (27) for the crystal excitation energy has the desired limiting 
behaviour as the intermolecular potential tends to zero. That is, as all ( i  1/211a i2) 
tend to zero, A l'3E~ tends to the corresponding excitation energy for an isolated 
molecule. The last term in Eq. (37), the lattice sum, corresponds to the dipole 
lattice sum of the Davydov theory [16]. Its origin, as shown by the factor 2z, is 
in the exchange integral K of the Roothaan expression 1-8] for the excitation 
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energy. Since z = 0 for triplet states, the present treatment also yields a zero 
Davydov splitting for triplet excitons, at least to the zeroth order. 

If the terms associated with the free molecule excitation energy, A I'3Eu, are 
collected together, the zero order crystal excitation energy may be conveniently 
expressed as 

AX'3Eu+ Z-12"c ~ Z c~ ~.' (ill211xi2)" (38) 
Ul U2 T2 

The first order correction to the excitation energy is likewise easily evaluated on 
substituting for l'3Hu,u(1 , | ; 2, 2) in Eq. (36). This contribution is given by 

A1"SEIt) + Z-12~ Z'  Z Z c~ Z 
p Ul u2 T2 

p u l  u2 7"2 

where dX'3El~ ) is the crystal induced 
citation energy, given by: 

d 1'3EI/1) -= I 'IF/,I)- l'lF~iX)+ 2 E '  
P 

+ t'ls~pi(2"c (ia llllxpl) 

(2'2~r izll [p2il) § x'xdpt(i2px [12ix)) 

( 1 , 1 d p i ( i 2 1 1 1 1 2 p l )  + a,2dpi(p211112i 1 ))(39) 

first-order change in the molecular ex- 

{ 2,1alp l(2z ( i  1111Px il ) - (i ,  l, [il Px )) 

- ( J i l l  [Px I x ) ) }  �9 

(40) 

All the d matrix elements in Eq. (40) are classifield as intramolecular [5] in 
character since they are between molecular orbitals belonging to a single mole- 
cule, here arbitrarily chosen as the first. Thus, the charge transfer or delocaliza- 
tion character of the crystal orbitals do not contribute to the crystal excited state 
energy to the first order. I t  should be noted, in this context, that to the first order 
the triplet Davydov splitting is zero. It can be shown that the second order 
triplet splitting is non-zero. 

Charge Transfer Excitons 

The diagonal elements for the charge transfer states from the configuration 
interaction matrix are given by 

(X'3M~(fl, o) IH - Eg~o.nd [ " 3 M ~ ,  0)) 
(41) 

= Z - 1 N - X  2 2 ('~176 2 Z l'3Hu,u(I' 2; 3' 4) 
ul u3 T1 T3 

where molecules 2 and 4 are fl unit cells and 0 sites away from molecules 1 and 3, 
respectively. Selecting the zero order terms, we find 

A l'3E~(fl, 0) = e (~ (11) - e (~ (ix) - ( i  I 12 l i 112)- (42) 

The necessary J and K integrals to complete the free molecule excitation energy 
expression are missing. On adding and substracting these we find 

A I ' 3 E ~ ( f l ,  O) - ~ ~U -- (ixt2[ixl2)+(ixlxlillt) -- 2"c(i~ll[Ixix) (43) 

where, as before A X'3EI ~ is the free molecule excitation energy. It can be seen 
that at the zeroth level of approximation, the charge transfer states have been 
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displaced, relative to the Frenkel state, by 

- ( i i  121il la) + ( i l / t [ i i  ll ) - 2z ( i l / j i l l  ii ) (44) 

where all the integrals are positive. The lattice sums from Eq. (37) have been 
neglected for the purpose of this comparison. Since the intramolecular Coulomb 
integral will typically be appreciably larger than the intermolecular integral, the 
charge transfer states will be higher in energy than the corresponding Frenkel 
state. In the case of the singlet excitons, this could be offset by a favourable value 
for the exchange integral in Eq. (43). Of course, there will be a whole series of 
charge transfer states which correspond to different values of electron-hole sepa- 
ration. As this separation increases, the intermolecular Coulomb will decrease in 
value until it reaches zero for infinite separation. Moreover, the rate of decrease 
of this integral will decrease with increasing separation. Thus, the charge transfer 
states will give rise to a stack of levels, with each succesive level closer to the next. 
The series limit for these levels, corresponding to infinite electron-hole separation, 
will be, to the zeroth order, the difference in the corresponding free molecule 
orbital energies. 

For relatively strongly interacting molecules, the positive displacement of the 
charge transfer exciton energy could be conceivably offset by negative higher 
order corrections. The first order correction is given by 

i ' tF} t l ) - lJF}i i ) -  ~ {2 '2dp t ( i l l2 l i lP2)+i ' idv i ( i i l2 lp i l2 )  (45) 
p 

d- 2'2XJpl(ilp 2 Ii112) + l'lSCCpi(Pl 12li112) } . 

Clearly, the d matrix elements would have to be especially large here in order 
to override the positive term in Eq. (43). This may perhaps be the case in the 
rather strongly interacting charge transfer crystals, such as the trinitrobenzene 
indole system. 

Discussion 

In the previous sections a discussion of the excited states of molecular crystals 
has been presented from the point of view of molecular orbital theory. It was 
shown that this approach leads to a result equivalent to that of the valence bond 
treatment of Davydov. 

The problem concerning the calculation of excited states for infinite systems, 
which was discussed by Ladik et al., has been resolved. Clearly, it is necessary 
to include the configuration interaction approach developed here in order to 
obtain realistic representations of the excited state for crystals, or polymers, with 
low dispersion bands. 

A method for calculating the excited state energies of crystals composed of 
relatively strongly interacting molecules was presented. This method has several 
attractive features. Although the intervening algebra is fairly labourious, the final 
expression for the excited state energies for both Frenkel and charge transfer 
excitons are reasonably straightforward. Moreover, the necessary d parameters 
are readily available, at least under the CNDO/2 (complete neglect of differential 
overlap) approximation [25] by means of the computer program PREDEN/ 
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C R Y D E N  [7]. This p rog ram is capable of supplying all data  necessary for the 
calculation of the spectra up to the third order. This level may  indeed be neces- 
sary when the theory  is applied, as it is intended, to relatively strongly interacting 
hydrogen  bonded  or charge transfer crystals. 

Since the theory  includes all valence electrons, it leads unambiguous ly  to a 
calculation of  molecular  geometries and charge distributions. Fur thermore ,  it is 
well known  that  the C N D O / 2  theory  works exceptionally well for calculations 
of molecular  geometries, even for excited molecules;  the charge distributions 
closely parallel those from more  detailed calculations. Thus, the application of 
empirical molecular  orbital  methods  to the calculations of the properties of  
molecular  crystals promises to provide useful informat ion at the semi-quanti ta-  
tive level. 

Finally, an impor tan t  proper ty  of the per turbat ion  approach  is that  it is still 
viable when applied to molecular  aggregates with no space group symmetry.  
Thus, the theory has been recently extended [26] to include calculations for 
molecules within regions of the crystal where the symmetry  has been destroyed 
by the presence of a lattice defect or  the proximity of a surface. It would be a 
relatively s t raightforward mat ter  to extend the theory presented here for excited 
states in the same way. A theory  of this type may  prove useful for the calculation 
of the orientat ions of host  molecules within lattices, or for model  calculations 
on the solvation effects on molecular  spectra. 
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